ɣ1 = (2 1^ 4 )
ɣ2 = ( 4 3^ 2)


1-
(2 4^ 1 ) = 35 48` 0.2302 "
(3 4^ 2 ) = 62 35` 13.21"

2- ( 12 & 23 )
L12 =151.60620221 m
L23=249.36931842 m

3-
α12=502124.8
α23=123465.5
α21=2302124.8

4- ( 3 2^ 1 ) =
α21 - α23 = 1063519.3

5-
we have to solve these eqns :
 sin(ɣ1) = k1 * sin(ɣ2

We have to get >>> (k1 & k2 & ɣ1 & ɣ2

 k1=(L23*sin 35480.2302 )/(L12 * sin 623513.21 ) s
So >>> k1 = 1.083875948

 (ɣ1) = k2 - (ɣ2
 k2 = 360 - ( 3 2^ 1 ) - 35480.2302 - 623513.21 s
Take care that --- (3 2^ 1) = 1063519.3
So  k2=155127.26s

Now we can solve>>  sin(ɣ1) = k1 * sin(ɣ2) =1.083875948 * sin (ɣ2

take care that
sin (ɣ1) = [sin (k2)]*[cos(ɣ2)] [cos(k2)]*[sin (ɣ2)]1
 1.083875948 * sin(ɣ2) = [sin (k2)]*[cos(ɣ2)] [cos(k2)]*[sin (ɣ2)]1

 (ɣ2) = 671244.7s
 (ɣ1) = 874912.08s


6-
so we have ---
(α14) =( α12)+ (ɣ1) =502124.8 + 874912.08
(α14) = 138107.37


7-
get angel (4 2^ 1) to get length of (L14)

(4 2^ 1) = 180 - ɣ2 - 35480.2302
(4 2^ 1) = 562247.69

[ sin(562247.69)]/[L14]=[sin(35480.2302)]/[L12]
 L14 = 215.8214865 m

8-
get coordinates of pt. 4
E= 81.135 + 215.8214865 * sin(138107.37)
N= 125.655 + 215.8214865 * cos(138107.37)

 pt. 4 = (225.0748602 , -35.15616465 )